. Авария ЧАЭС. Причины её известны. Часть 2 | ЯСталкер

Авария ЧАЭС. Причины её известны. Часть 2

Rate this post

Коэффициенты реактивности

Как бы ни была надёжна аварийная защита, она срабатывает, когда мощность реактора уже растёт. Но ещё безопасней будет, если в реакторе при росте мощности сама собой возникает отрицательная реактивность без всякого вмешательства СУЗ, т.е. когда имеется отрицательная обратная связь между мощностью и реактивностью. Тогда реактор способен к саморегулированию, и никакой ядерный взрыв в нём в принципе невозможен. И такое требование в стандартах и правилах по ядерной безопасности существует. Другое дело, что выполнение этого требования связано с тонкими вопросами нейтронной физики, и проверить на стадии проектирования выполняются ли эти требования в данной конструкции реактора, не просто.

Обратные связи описываются в понятиях эффектов и коэффициентов реактивности. Эффект это изменение реактивности при заданном изменении какого либо параметра, характеризующего состояние активной зоны реактора, например, температуры топлива, замедлителя и др. (температурный эффект). Коэффициент реактивности это отношение изменения реактивности к изменению параметра (при малых изменениях), т.е. производная от эффекта. В реакторе РБМК особую роль с точки зрения безопасности играет паровой (иначе пустотный) эффект и паровой коэффициент реактивности αφ. С ростом паросодержания уменьшается количество воды в активной зоне (увеличивается количество пустоты), и если вода действует как замедлитель, то реактивность падает и αφ отрицателен, так как ухудшается замедление нейтронов. Если же вода действует как поглотитель (на фоне графита, практически не поглощающего нейтроны) то αφ положителен, так как уменьшается вредное поглощение, и реактивность растёт.

При изменении мощности реактора изменяются все параметры в активной зоне и проявляются все эффекты реактивности. Динамика реактора определяется суммарным действием этих эффектов, как отрицательных, так и положительных, и, в конечном счете, важен результат – мощностной коэффициент реактивности αw (приращение реактивности на единицу приращения мощности). Реактор способен к саморегулированию, если αw отрицателен, а если он положителен, то такой реактор неустойчив и ядерноопасен. Но здесь есть одна тонкость.

При изменении мощности реактора разные эффекты проявляются с разной степенью инерционности, так например, температура графита меняется очень медленно, а разогрев топлива, дальнейшая передача тепла воде и увеличение парообразования происходит достаточно быстро. Различают два мощностных эффекта реактивности: полный, который проявляется при переходе с одного стационарного уровня мощности на другой, и быстрый, определяемый только температурой топлива (доплер-эффект при захвате резонансных нейтронов в топливе) и парообразованием (αφ). Отрицательность полного мощностного эффекта, обеспечивает саморегулирование реактора при медленных переходных процессах (с чем главным образом и имеют дело при эксплуатации АЭС). Тогда как отрицательность быстрого мощностного коэффициента исключает опасность самопроизвольного неконтролируемого возрастания мощности, и гарантирует ядерную безопасность реактора.

В реакторе РБМК, как выяснилось после Чернобыльской аварии, быстрый мощностной коэффициент при работе на малой мощности был положительным. Это произошло в результате ошибки в расчётах величины αφ при проектировании реактора ([8], стр. 556).

Кроме неконтролируемого роста мощности реактора, существует ещё ряд различных аварийных ситуаций, при которых требуется срочно остановить реактор, чтобы не произошли разрушения пусть много меньшего масштаба, но способные на длительный срок вывести из строя энергоблок АЭС или загрязнить радиоактивностью окружающую среду. Для срочной остановки реактора в таких случаях используется тот же исполнительный механизм аварийной защиты, что и для предотвращения неконтролируемого разгона. То есть электронные схемы, отслеживающие и распознающие эти аварийные ситуации, вырабатывают тот же самый аварийный сигнал АЗ-5, что и схемы АЗМ и АЗСР. Такие аварийные ситуации обычно связаны с какими-либо опасными отклонениями параметров технологического процесса в энергоблоке, грозящими серьёзными нарушениями режима охлаждения активной зоны реактора или потерей целостности контора циркуляции, но не авариями масштаба катастрофы. Эти электронные схемы, называются технологическими защитами, и они в отличие от АЗМ и АЗСР могли блокироваться с пультов управления, чтобы избежать излишних остановок энергоблока, когда на самом деле необходимости в этом нет. Вот такими защитами и манипулировал оперативный персонал 26-го апреля 1986 г.

Остаточное тепловыделение и радиационная безопасность

Принципиальное отличие ядерного реактора от котельной установки ТЭС ещё и в том, что в нём нельзя полностью «выключить» тепловыделение. Не всё тепло, обязанное своим происхождением делению ядер, выделяется в реакторе сразу, около 7% этого тепла выделяется при последующем радиоактивном распаде продуктов деления. В остановленном реакторе ещё долго продолжается выделение тепла, пока не распадутся образовавшиеся продукты деления, и всё это время его активную зону надо охлаждать. Это остаточное тепловыделение вначале довольно быстро спадает, но даже через сутки после остановки оно составляет около 0,5% от номинальной мощности, т.е. порядка 10…15 МВт тепловой мощности. И всё это выделяемое тепло необходимо отводить, иначе разрушение активной зоны реактора неминуемо и оно грозит аварией, сравнимой с чернобыльской.

В нормальных условиях при остановке реактора отвод этого остаточного тепловыделения не представляет проблемы. Сначала циркуляцию теплоносителя через активную зону обеспечивают ГЦН, продолжая работать так же, как они работали на мощности, а затем, если это потребуется, включается специальная система расхолаживания реактора. Опасность возникает только в аварийных ситуациях, когда почему-либо оказываются неработоспособными ГЦН или, если из-за разрушений в КМПЦ, активная зона реактора может остаться без охлаждения. На этот случай предусматриваются проектом системы безопасности. Две самые тяжёлые аварийные ситуации были рассмотрены в проекте.

1. «Потеря собственных нужд», т.е. исчезновение электропитания насосов и вообще всего вспомогательного оборудования обслуживающего энергоблок. Это может произойти только при полном обесточивании АЭС, когда невозможно взять питание ниоткуда, не только от собственного генератора, но и от соседнего энергоблока, и от резервного трансформатора из внешней линии электропередач, на которую работал энергоблок. На этот случай предусмотрен свой собственный автономный источник энергии резервная дизельная электростанция (РДЭС), которая запускается автоматически и подаёт питание на шины собственных нужд. Время, в течение которого РДЭС включалась в работу и набирала полную мощность, не превышает 1 мин. А в течение этого времени ГЦН качают воду по инерции, за счёт механической энергии, запасённой в массивном маховике, установленном на этот случай на валу каждого ГЦН.

2. Разрыв напорного коллектора ГЦН полным сечением (его внутренний диаметр 900 мм). Мгновенно остаётся без охлаждения половина активной зоны реактора, это «максимальная проектная авария» (МПА). На этот случай предусмотрена специальная Система Аварийного Охлаждения Реактора (САОР). Она включает в себя насосы аварийного охлаждения, обеспечивающие вместо ГЦН циркуляцию теплоносителя через активную зону реактора, и гидроёмкости с большим запасом воды, откуда она под большим давлением газовой подушки может поступать в каналы реактора, минуя ГЦН и разрушенную часть КМПЦ. Гидроёмкости это быстродействующая, но краткосрочная часть САОР, она работает не более 2-х минут пока запускаются аварийные насосы САОР, которые могут вести длительное расхолаживание. Соответствующая технологическая защита распознаёт такую аварию и вырабатывает аварийные сигналы: МПА для запуска САОР и АЗ-5 для заглушения реактора.

Выбег турбогенератора

Итак, безопасность обеспечена при каждой из двух перечисленных аварий, в одном случае с помощью САОР, в другом с помощью РДЭС. Но, если эти две аварии произойдут одновременно по общей, причине, то в этом случае аварийные насосы САОР не смогут включиться в работу, пока не заработает РДЭС, т.е. образуется зазор по времени примерно 1 мин., в течение которого охлаждение активной зоны реактора остаётся под угрозой. В 1976 г в связи с созданием реакторов РБМК второй очереди, было предложено (главным конструктором реактора) использовать в этом случае выбег турбогенератора. Механической энергии запасённой в роторе турбогенератора достаточно для электроснабжения аварийных насосов, пока не заработает РДЭС.

Предложение было поддержано проектировщиком АЭС и научной общественностью. Оно было отражено в учебных пособиях по электротехнике АЭС и даже в проектной документации, но в очень общем виде, и оно не было внедрено. Дважды или даже трижды проведённые испытания в 1982, 1984 и в 1985 гг. показали, что совместный выбег турбогенератора с механизмами собственных нужд, это не такой простой режим, и чтобы он осуществлялся, необходима дополнительная доработка штатной системы возбуждения генератора. Это было сделано, и при очередной остановке 4-го блока ЧАЭС на ППР в 1986 г такие испытания были проведены. На этот раз сами по себе испытания прошли успешно, но произошла Чернобыльская авария, и эти испытания оказались в центре событий, как чуть ли не одна из главных причин аварии.

Авария

Авария произошла во время, когда выполнялась программа испытаний выбега турбогенератора, поэтому скажем несколько слов об этой программе.

Эксперимент

Целью испытаний была проверка возможности использования выбега для поддержания производительности механизмов собственных нужд пока включатся в работу и наберут полную нагрузку дизель-генераторы (ДГ). Для запуска режима выбега была собрана специальная схема выдачи сигнала МПА в электрическую часть схемы ступенчатого набора нагрузки ДГ и в схему выбега генератора. Сам запуск выполнялся от кнопки, установленной на панели безопасности в БЩУ. Одновременно с нажатием этой кнопки должна быть прекращена подача пара на турбину закрытием стопорно-регулирующих клапанов (СРК).

При реальной МПА закрытие СРК происходит автоматически от срабатывания защитных устройств турбины, а в данном случае это действие выполняет СИУТ (старший инженер управления турбиной). При этом должна автоматически сработать аварийная защита АЗ-5 по отключению 2-х турбогенераторов (один отключён заранее), и реактор должен быть остановлен. Для обеспечения надёжного охлаждения реактора независимо от исхода эксперимента, оборудование собственных нужд было поделено на две группы: оборудование, подключённое к рабочим шинам, на которых напряжение падает в процессе выбега, и оборудование в выбеге не участвующее и подключённое к шинам, сохраняющим постоянное питание. Хотя сигнал на запуск механизмов САОР (гидроёмкостей и аварийных насосов) от кнопки МПА не подавался, во избежание случайностей и заброса воды в КМПЦ, программой предусматривалось отключение ёмкостей на время эксперимента закрытием ручных задвижек на линии подачи воды.

Согласно программе, реактор должен был перед началом эксперимента находиться на мощности 700…1000 МВт.

Хронология событий

Остановка энергоблока на ППР и испытания выбега были запланированы на 25.04.1986 г. Снижение мощности реактора с номинала (3100 МВт) начато в 01:06, и в течение 3-х часов мощность была снижена до уровня 1600 МВт (50%). В эту же ночную смену выполнялись регламентные, а также другие специальные работы, запланированные по турбинам №7 и №8. По окончании этих работ, уже в дневную смену предполагалось выполнять программу испытания выбега турбогенератора ТГ-8. На выполнение всех работ в программе отводилось 4 часа, из них сам эксперимент занимает от силы 1,5 минуты, остальное подготовительные работы. Но жизнь ломает любые планы.

Поступил запрет от дежурного диспетчера Киевэнерго на дальнейшее снижение мощности энергоблока, сначала до 14:00, а потом вообще на неопределённый срок (на Южноукраинской АЭС произошла авария, и нужно возместить потерю генерируемой мощности в энергосистеме). В связи с этим, подготовительные работы по программе выбега были начаты на мощности 50%, и в 14:00 были заблокированы гидроёмкости САОР. Очевидно, предполагалось, что вот-вот поступит разрешение на снижение мощности, после чего подготовительных работ останется всего минут на 20. Однако разрешение было получено лишь к концу вечерней смены, и бригада испытателей весь день прождала в напряжённом ожидании. А испытания пришлись на ночную смену, которая к ним заранее не была готова.

Снижение мощности (с 50%) было начато 25.04.86 в 23:10, и требуемая по программе мощность (700 МВт) была достигнута 26.04.86. в 00:05, уже когда заступила ночная смена. Далее согласно программе испытаний необходимо было включить в работу два дополнительных ГЦН, и приступить к выполнению основной части программы. Однако, этого не произошло, и все дальнейшие действия оперативного персонала были сплошной импровизацией между программой и реальной обстановкой на энергоблоке.

А реальная обстановка такова. Кроме программы испытаний выбега турбогенератора должна была быть выполнена ещё одна работа: измерение вибраций турбины на холостом ходу турбогенератора. Эти две работы, в общем-то, противоречат друг другу. Обе они требуют разгрузки турбогенератора, т.е. отключения его от внешней сети, но в одном случае разгрузка полная, до холостого хода (т.е. без выработки какой-либо электроэнергии), а в другом случае разгрузка только до уровня собственных нужд. В первом случае обороты холостого хода поддерживаются за счёт (небольшой) подачи пара на турбину, и реактор для этого нужен (чтобы не падало давление в БС), во втором случае пар не подаётся, и реактор не нужен, а обороты под нагрузкой собственных нужд сравнительно быстро падают. В программе испытаний выбега такая коллизия не была предусмотрена.

Для поддержания турбогенератора на холостом ходу и измерения вибраций турбины мощность 720 МВт, достигнутая в 00 ч.05 мин., слишком велика и её, видимо, стали снижать дальше (до уровня собственных нужд). Но могло быть и так: ночная смена А.Ф. Акимова приняла реактор на ходу, во время быстрого снижения мощности с уровня 1600 МВт, при наличии сильного нестационарного ксенонового отравления. Только что пришедший на смену оператор реактора (СИУР) Л.Ф. Топтунов не успел войти в быстро меняющуюся обстановку и без какого-либо определённого умысла просто не сумел стабилизировать мощность на требуемом уровне. Как бы то ни было, мощность снижалась, и во время этого снижения при переходе с одной системы автоматического регулирования (ЛАР) на другую (АР) в 00 ч. 28 мин. Топтунов по оплошности допустил провал мощности реактора практически до нуля. Как именно выходили из провала, и было ли это нарушением технологического регламента – вопрос дискуссионный, но факт остаётся фактом, по выходе из провала была установлена мощность реактора 200 МВт (вместо 700, указанных в программе).

После выхода из провала началась работа (в 00 ч. 41 мин) по измерению вибраций турбины, которая закончилась в 01 ч.16 мин, и только после этого можно было приступить, к испытанию выбега. Работа реактора на малом уровне мощности при малом ОЗР сопровождалась неустойчивостью теплогидравлических параметров и возможно неустойчивостью нейтронного поля. Об этом свидетельствуют многократные аварийные сигналы по уровню в барабане сепараторе (БС), срабатывания БРУ-К (Быстродействующая Редукционная Установка, отводящая пар в Конденсатор, минуя турбину), перерегулирования в расходе питательной воды, и выходы из строя автоматических регуляторов нейтронной мощности АР1 и АР2. Именно поэтому, видимо, в период с 00:35 по 00:45, чтобы сохранить реактор на мощности, были заблокированы аварийные сигналы по теплогидравлическим параметрам КМПЦ (и сигнал АЗ-5 по отключению 2-х ТГ). Насколько эти действия персонала согласуется с регламентом эксплуатации, мы позже обсудим. А сейчас прокомментируем рис. 3.

Авария ЧАЭС. Причины её известны. Часть 2

Рис. 3. Мощность реактора, аварийные сигналы и действия операторов

Мощность (точнее поток нейтронов, которому она пропорциональна) в реакторе РБМК-1000 измеряется двумя различными независимыми способами: интегрированием показаний более сотни датчиков системы внутриреакторного контроля (СФКРЭ) и по показаниям 4-х внешних (Боковых) Ионизационных Камер (БИК). Автоматические Регуляторы (АР) и оператор, управляя реактором в ручную, поддерживают мощность по показаниям БИК. Эти датчики безынерционны и мгновенно отслеживают все изменения интегральной мощности, но они не дают представления о распределении тепловыделения в активной зоне, от которого зависит абсолютный уровень мощности реактора. Поэтому тепловая мощность реактора в абсолютных единицах определяется по СФКРЭ. При нормальной работе реактора, когда распределение энерговыделения (нейтронного потока) по активной зоне устойчиво и мощность реактора постоянна и достаточно велика, обе системы контроля показывают одно и то же. Но в переходных режимах (из-за большой инерционности датчиков) и на малой мощности (из-за чувствительности датчиков к гамма-излучению) мощность, измеренная по СФКРЭ, недостоверна и отличается от показаний ИК.

Мощность реактора по показаниям БИК (на рис. 3) не менялась вплоть до нажатия кнопки АЗ-5, мощность же по СФКРЭ немного возросла за последние 5…10 минут. Это означает, что распределение нейтронного потока по активной зоне существенно менялось, но система регулирования с этим в целом справлялась. На рис. 3 также изображена работа автоматических регуляторов (их погружение в активную зону). Сигналы неисправности АР означают, что соответствующий регулятор извлёк (или погрузил) свои 4 стержня до предела и отключился. Чтобы этого не происходило, оператор должен вовремя отслеживать такие ситуации и проводить перекомпенсацию реактивности с помощью стержней ручного регулирования (РР). Сигналы ПК вверх-вниз это и есть предупреждения об этом. На протяжении всего времени вплоть до начала эксперимента стержни РР в основном только извлекались из реактора. Временные выключения ДРЕГ из работы не представляют ничего серьёзного, и связаны с какими-либо рутинными работами на вычислительном комплексе СКАЛы. Во всяком случае, последний перерыв в работе, это перезагрузка программы ДРЕГ с новыми установочными данными перед началом эксперимента.

Не меньше, а может быть даже и больше сложностей в управлении энергоблоком, чем описано выше для реактора, создавала нестабильность тепло-гидравлических параметров в КМПЦ. Тем не менее, работы по программе испытаний выбега решено было продолжить. В 01:00 была установлена в ДРЕГ регистрация основных наиболее существенных параметров (расходы питательной воды, уровни и давления в БС, расходы через каждый ГЦН, и др.) с интервалом 2 с и были включены в работу ещё два дополнительных ГЦН (в 01:02 и в 01:06 соответственно). При этом суммарный расход через активную зону более чем на 20% превысил регламентное значение. Состояние опасное с точки зрения вскипания теплоносителя на входе в активную зону, а также возможности кавитации на ГЦН и срыва циркуляции.

Но никакой опасности ядерной аварии эксплуатационный персонал не чувствовал и предполагать не мог. Все твёрдо знали, что быстрый мощностной коэффициент реактивности у реактора отрицателен, и вообще реактор находится под надёжной защитой «SCRAM» от любых случайностей. Эксперимент начался в 01:23:04, закрылись стопорные клапаны турбины, и начался совместный выбег турбогенератора ТГ-8 с четырьмя ГЦН (и другим электромеханическим оборудованием). Включение в работу дизель-генератора и ступенчатый набор нагрузки закончилось к 01:23:44 и в течение этого времени электроснабжение собственных нужд осуществлялось за счёт выбега турбогенератора.

Поведение параметров энергоблока за время выбега (исключая последние несколько секунд аварийного процесса) в целом не отличается от предыдущего и даже выглядит внешне более стабильным. Давление в барабанах-сепараторах растёт, уровень восстанавливается, расход через активную зону убывает, расход питательной воды удерживается с точностью ±50 т/час. Опасность кавитации и закипания на входе в активную зону уменьшается. Как показали последующие расчёты ([11], стр. 114), максимальной она была за 2 мин до начала выбега.

Незаглушение реактора с началом выбега являлось серьёзным нарушением программы эксперимента и в корне меняло его статус. Этим он превращался из работы, касающейся только различных переключений в электрических цепях энергоблока на остановленном реакторе, в ядерноопасную работу при работающем реакторе. Так как аварийная защита по отключению 2-х ТГ была ранее заблокирована, то заглушить реактор должны были кнопкой АЗ-5 одновременно с прекращением подачи пара на турбину. Однако этого не произошло, кнопка АЗ-5 была нажата спустя 35 с после закрытия СРК, в 01:23:40 (по времени ДРЕГ), что уже практически в конце, а не в начале выбега.

Далее в реакторной установке начался аварийный процесс, закончившийся полным разрушением реактора и значительной части здания энергоблока с выбросом раскалённых фрагментов активной зоны (графита и обломков твэл), последующими пожарами на крышах примыкающих зданий, в машинном зале и, что самое тяжёлое, пожаром в шахте реактора. Практически все свидетели, находившиеся как в здании, так и за его пределами, говоря о своих ощущениях, описывают это, как два последовательных взрыва с интервалом в несколько секунд (второй взрыв значительно мощнее первого).

Аварийный процесс от момента нажатия кнопки АЗ-5 до разрушения реактора протекал так быстро, что для его полноценного наблюдения оказалось недостаточным разрешение по времени, даваемое программой ДРЕГ, не говоря уже о самопишущих приборах БЩУ, настроенных на регистрацию со скоростью протяжки ленты 60 мм/час. Единственным документом регистрации с разрешением, достаточным для точной взаимной привязки по времени основных событий аварии, оказалась осциллограмма выбега.

Последовательность событий, зарегистрированных за последние 10 с, хорошо укладывается в определённую картину аварии. Детально схема развития аварийного процесса разрушения реактора очень мало проработана, но наиболее общепринята такая схема. В реакторе появилась большая (нескомпенсированная) положительная реактивность, и катастрофически быстро возрастает мощность. Увеличивается парообразование и растёт давление в технологических каналах реактора (ТК). За счёт большого положительного парового коэффициента реактивности ввод реактивности и рост мощности ещё более ускоряется. В некоторых наиболее тепло-напряжённых ТК топливо разогревается до чрезмерно высоких температур (близких или даже превышающих температуру плавления) и тепловыделяющие сборки (ТВС) разрушаются.

Разрушение ТВС и контакт топлива со стенкой ТК вызывает разрушение самого ТК. Пар получает выход в реакторное пространство (РП), герметически ограниченное цилиндрическим кожухом реактора и защитными плитами, сверху и снизу, в которых жёстко, на сварке, закреплены каналы. Обезвоживание каналов и рост реактивности ещё более ускоряется. Разрушение нескольких ТК (хватает двух) вызывает сильный рост давления в РП, достаточный для отрыва и подъёма верхней защитной плиты. Это в свою очередь (чисто механически) вызывает массовое разрушение технологических каналов и выход пара (под давлением ≈ 70 атм) в открытое пространство. Всё происходит практически мгновенно, и это есть первый (паровой) взрыв. Как взрыв парового котла. Вся активная зона реактора сразу и полностью обезвоживается, чем вносится положительная реактивность уже намного превышающая долю запаздывающих нейтронов β. Происходит разгон реактора на мгновенных нейтронах и его полное разрушение. Это уже второй (ядерный) взрыв. Не взрыв атомной бомбы, но той же физической природы.

Ни одно зарегистрированное системой ДРЕГ и приборами БЩУ событие не противоречит вышеописанному сценарию и наоборот ни одна из других (хоть сколько-нибудь осмысленных) альтернативных схем развития аварийного процесса не удовлетворяет всей совокупности зарегистрированных данных. Эта схема согласуется также с физическими характеристиками реактора. Непримиримые дискуссии велись (и кое-кем ведутся до сих пор) вокруг двух вопросов: 1) что явилось причиной начального ввода положительной реактивности и какова её величина; 2) когда и как начался этот ввод положительной реактивности.

Ну а где же была аварийная защита реактора («человек с топором»), почему она не остановила аварийный процесс с самого его начала и не заглушила реактор?

Причины

Причины любой крупной аварии всегда ассоциируются в общественном сознании (и не только в нём) с вопросом «кто виноват», и это сильно затрудняет её техническое расследование. Гораздо продуктивнее другое значительно более точное понятие – исходное событие аварии. Так, например, можно ли считать причиной чернобыльской аварии нарушение в 07:00 25.04.86 эксплуатационным персоналом регламента эксплуатации, требовавшего срочно остановить энергоблок, а персонал продолжал работать, как ни в чём не бывало? Конечно можно. Если бы реактор остановили, никакой аварии не было бы. А можно ли считать это исходным событием аварии? Конечно, нет. Реактор продолжал после этого нормально работать ещё почти сутки, и работал бы дальше, если бы не произошли другие события. То же самое можно сказать и о провале мощности в 00:28 26.04.86. Если бы позволили реактору заглохнуть, и не стали его снова выводить на мощность, то не было бы аварии. Но исходным событием аварии это точно не было, реактор после этого ещё проработал почти час и при желании в любой момент мог бы быть остановлен без всякой аварии. И даже закрытие СРК турбины (т.е. эксперимент с выбегом ТГ) не является таким исходным событием. Если бы персонал знал, что реактор находится во взрывоопасном состоянии, чего не было видно ни по каким приборам или сигналам БЩУ, то он мог бы спокойно не спеша остановить реактор, не взрывая его. Для выбега работающий реактор был не нужен.

А можно ли считать исходным событием аварии нажатие кнопки аварийной защиты в 01:23:40? Оказывается, не только можно, но и нужно. Действительно, до момента нажатия кнопки АЗ-5 никаких признаков катастрофического возрастания мощности реактора не наблюдается, а через три секунды после этого момента мощность зашкаливает по всем приборам и на самописце даёт вертикальную линию (рис. 3). Как такое может быть («тормоза разгоняют автомобиль»)? Оказывается, может.

Авария ЧАЭС. Причины её известны. Часть 1|Авария ЧАЭС. Причины её известны. Часть 3

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Яндекс.Метрика Top.Mail.Ru